Computational Parametric Sensitivity Analysis of Perturbed PDE Optimal Control Problems with State and Control Constraints

نویسندگان

  • Christof Büskens
  • Roland Griesse
چکیده

We study parametric optimal control problems governed by a system of timedependent partial differential equations (PDE) and subject to additional control and state constraints. An approach is presented to compute optimal control functions and so-called sensitivity differentials of the optimal solution with respect to perturbations. This information plays an important role in the analysis of optimal solutions as well as in real-time optimal control. The method of lines is used to transform the perturbed PDE system into a large system of ordinary differential equations. A subsequent discretization is discussed that transcribes parametric ODE optimal control problems into perturbed nonlinear programming problems (NLP) which can be solved efficiently by SQP methods. Second order sufficient conditions can be checked numerically, and we propose to apply an NLP-based approach for robust computation of sensitivity differentials of optimal solutions with respect to the perturbation parameters. The advertised numerical method is illustrated by the optimal control and sensitivity analysis of the Burgers equation. This example demonstrates the general ability of the algorithm to efficiently and robustly calculate an accurate numerical solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

Solution of Bang-Bang Optimal Control Problems by Using Bezier Polynomials

In this paper, a new numerical method is presented for solving the optimal control problems of Bang-Bang type with free or fixed terminal time. The method is based on Bezier polynomials which are presented in any interval as $[t_0,t_f]$. The problems are reduced to a constrained problems which can be solved by using Lagrangian method. The constraints of these problems are terminal state and con...

متن کامل

A Computational Method for Solving Optimal Control Problems and Their Applications

In order to obtain a solution to an optimal control problem‎, ‎a numerical technique based on state-control parameterization method is presented‎. ‎This method can be facilitated by the computation of performance index and state equation via approximating the control and state variable as a function of time‎. ‎Several numerical examples are presented to confirm the analytical findings and illus...

متن کامل

Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet

The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004